Quantum DeepONet: Neural operators accelerated by quantum computing
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Introduction Quantum DeepONet Quantum noise
A quantum neural network is an innovative type of neural network that integrates A DeepONet includes a branch net and trunk net, each with an equivalent number of output neuron, denoted Quantum noise is a major obstacle for the practicality
gquantum computing principles to enhance data processing and learning capabili- by p. The final output of DeepONet is of a quantum algorithm in the noisy intermediate-

scale quantum (NISQ) era. We discuss the feasibility

fies, potentially surpassing classical neural network performance. p
G'o(v)(§) = bi(v)tr(§) + bu, of our model under following types of noise:
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A deep operator network (DeepONet) is a machine learning architecture approx-

imating the mapping between the input function space V and output function = Finite-sampling noise, adjustable through the

where G’ denotes the learned approximation of operator G, by € R is the bias, and 0 is the trainable parameter

space U: . . number of shots.
P of the network. In Quantum DeepONet, the classical neural network layers are replaced with quantum layers. .. : . . .
G:Vov—uel. = Depolarizing noise, modifiable via the noise
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The neural network layer accelerated by quantum algorithm is referred as a quan- Y * * N N N N
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Loading classical inout data We first exclude quantum and statistical noise to assess the model’s theoretical accuracy and performance. 008 Network Depth
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The workflow of our quantum method is divided into three distinct phases: N | o
1. Training quantum DeepONet on classical computer; I‘l-o I 0.02 s . . : .
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Table 1. Complexity. n is the input dimension and 9 is threshold for the tomography error. Figure 1. Examples of quantum DeepONet prediction. (A) Advection equation. (B) Burgers’ equation.



